
Future Technology Devices International Limited (FTDI)

Unit 1,2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2011 Future Technology Devices International Limited

Use of FTDI devices in life support and/or safety applications is entirely at the user‟s risk, and the user
agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense

resulting from such use.

Future Technology Devices International Ltd.

Application Note AN_113

Interfacing FT2232H Hi-Speed Devices

To I2C Bus

Document Reference No.: FT_000137

Version 1.1

Issue Date: 2011-02-25

.

 Copyright © 2011 Future Technology Devices International Limited 1

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Table of Contents

1 Introduction.. 2

1.1 I2C Bus Introduction .. 2

2 Sample Project with FT2232H ... 4

2.1 Overview .. 4

2.2 Sample Circuit ... 4

2.3 Sample Code .. 5

2.3.1 Definitions and Functions .. 5

2.3.2 Initialise EEPROM Device ... 7

2.3.3 Program EEPROM – Random Byte Address .. 9

2.3.4 Read EEPROM – Random Byte address .. 10

2.4 Using Channel B Requirements ... 11

3 Contact Information... 12

Legal Disclaimer: ... 14

Appendix A - References .. 15

Appendix B - List of Figures and Tables .. 16

Appendix C - Revision History .. 17

Revision Record Sheet .. 18

 Copyright © 2011 Future Technology Devices International Limited 2

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

1 Introduction

The FT2232H and FT4232H are the FTDI‟s first USB 2.0 Hi-Speed (480Mbits/s) USB to UART/FIFO ICs.
They also have the capability of being configured in a variety of serial interfaces using the internal MPSSE
(Multi-Protocol Synchronous Serial Engine). The FT2232H device has two independent ports, both of
which can be configured using MPSSE while only Channel A and B of FT4232H can be configured using

MPSSE.

Using MPSSE can simplify the synchronous serial protocol (USB to SPI, I2C, JTAG, etc.) design. This
application note illustrates how to use the MPSSE of the FT2232H to interface with the I2C bus. Users can
use the example schematic and functional software code to begin their design. Note that software code is
provided as an illustration only and not supported by FTDI.

1.1 I2C Bus Introduction

I2C is a low- to medium-data-rate master/slave communication bus. Two wires, serial data (SDA) and
serial clock (SCL), carry information between the devices connected to the bus. Each device is
recognized by a unique address and can operate as either a transmitter or receiver, depending on the
function of the device. In addition to transmitters and receivers, devices can also be considered as
masters or slaves when performing data transfers. A master is the device which initiates a data transfer

on the bus. At that time, any device addressed is considered a slave.

The physical layer of I2C bus is a simple handshaking protocol that relies upon open collector outputs on
the bus devices and the device driving or releasing the bus lines, so a pull-up resistor is needed on each
wire of the bus.

I2C bus is a true multi-master bus including collision detection and arbitration to prevent data corruption
if two or more masters simultaneously initiate data transfer

Serial, 8-bit oriented, bi-directional data transfers can be made at up to 100 kbit/s in the Standard-mode

of I2C bus, up to 400 kbit/s in the Fast-mode or up to 3.4 Mbit/s in the High-speed mode.

Figure 1 shows typical data transfers on the I2C bus. The master supplies the clock; it initiates and

terminates transactions and the intended slave (based upon the address provided by the master)
acknowledges the master by driving or releasing the bus. The slave cannot terminate the transaction but
can indicate a desire to by a “NAK” or not-acknowledge.

Figure 1 Data transfer on I

2
C bus

I2C specification defines unique situations as START (S) and STOP (P) conditions (see Figure 2). A HIGH

to LOW transition on the SDA line while SCL is HIGH indicates a START condition. A LOW to HIGH
transition on the SDA line while SCL is HIGH defines a STOP condition. START and STOP conditions are
always generated by the master.

 Copyright © 2011 Future Technology Devices International Limited 3

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Figure 2 START and STOP conditions

Every byte put on the SDA line must be 8-bits long. The number of bytes can be transmitted per transfer
is unrestricted. Each byte is followed by an acknowledge bit. Data is transferred with the most significant
bit (MSB) first. In most cases, data transfer with acknowledge is obligatory. The acknowledge–related
clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the
acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse

so that it remains stable LOW during the HIGH period of this clock pulse (see Figure 3). Also, set-up and
hold times must also be taken into account.

Figure 3 Acknowledge on the I

2
C-bus

Data transfers of I2C specification should follow the format. After the START condition (S), a slave
address should be sent first. This address is 7 bits long followed by an eighth bit which is a data direction
bit (R/) – a „zero‟ indicates a transmission (WRITE), a „one‟ indicates a request for data (READ). After

the slave address byte is sent, master can continue its data transfer by writing or reading data byte as
defined format. The data transfer is always terminated by a STOP condition generated by the master.

 Copyright © 2011 Future Technology Devices International Limited 4

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

2 Sample Project with FT2232H

2.1 Overview

To demonstrate how to use the Multi-Protocol Synchronous Serial Engine (MPSSE) in a USB to I2C bus
interface, a sample project is given. An EEPROM (24LC256) device with I2C serial interface is selected as

the typical application. A reference schematic showing the I2C connection between the FT2232H and the
24LC256 is given. Additionally some sample software (C++ listing) is provided which illustrates how to
initialize, program and read 24LC256 EEPROM device via the I2C interface.

2.2 Sample Circuit

Figure 4 FT2232H interface with 24LC256

Figure 1 illustrates an example of interfacing the MPSSE port of FT2232H with I2C serial EEPROM device.
The FT2232H is in USB bus powered design configuration. Please refer to FT2232H datasheet for detailed
specifications. The USB VBus (+5V) is regulated to +3.3V to supply VCCIO, VPHY, VPLL and VREGIN of
FT2232H, the 93C46 EEPROM and the 24LC256 EEPROM devices. The output of the on-chip LDO regulator
(+1.8V) of FT2232H drives the FT2232H core supply (VCORE). The 93C46 EEPROM is an option to allow

customization of USB settings such as VID/PID, description, serial number, Remote Wake up, etc.

A Microchip 24LC256 serial EEPROM is used as the target device. The 24LC256 is a 256K bits Electrically
Erasable PROM with 2-wire I2C compatible serial interface. It supports a serial clock frequency of up to
400kHz. Please refer to the 24LC256 datasheet for a detailed specification.

The A0, A1, A2 pins are used by the 24LC256 device for multiple device operation. The chip is selected
when the levels on these inputs are identical with slave address. They may be tied to either VCC or VSS

in above circuit.

Both channels of FT2232H can be configured to work in MPSSE mode. Channel A is used in Figure 1.
Detailed pin definitions for the FT2232H I2C connection are described in Table 1. A detailed functional
description is given below:

SK – Connect to SCL pin of 24LC256. Serial clock pin to synchronize the data transfer, initiated by
FT2232H and output to 24LC256. The clock value is determined by FT2232H internal clock divisor and

http://www.ftdichip.com/Documents/DataSheets/DS_FT2232H_V202.pdf

 Copyright © 2011 Future Technology Devices International Limited 5

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

can be up to 30Mhz. This signal requires a pull-up resistor to VCC (typical 10 KΩ for 100kHz and 2 KΩ for

400kHz).

DO/DI – Wired together and connected to SDA pin of 24LC256 for bidirectional data transfer. DO set as
output pin to transfer serial data or address from FT2232H to 24LC256 device. DI set as input pin to
receive serial data input pin from 24LC256 device to FT2232H. Requires a pull-up resistor to VCC (typical

10 KΩ for 100kHz and 2 KΩ for 400kHz).

GPIOL0 – General purpose I/O of MPSSE port of FT2232H. Connect to WP pin of 24LC256 device to
control the Write Protect function of 24LC256 device. This is set to a logic low level for normal operation
mode of the 24LC256. If set to a logic high level, the write operation of 24LC256 device is prohibited.

Channel A Channel B MPSSE
Pin

Name

Type Description

Pin# Pin Name Pin # Pin Name

16 ADBUS0 38 BDBUS0 SK Output Serial Clock

17 ADBUS1 39 BDBUS1 DO Output Serial Data/Address Output

18 ADBUS2 40 BDBUS2 DI Input Serial Data Input

21 ADBUS4 43 BDBUS4 GPIOL0/
GPIOH0

Output Write Protect control output

Table 1 Pin Description of FT2232H connecting with 24LC256

2.3 Sample Code

The following sample code illustrate the commands required by MPSSE. For further details on these
commands, please refer to AN-108 Command Processor For MPSSE and MCU Host Bus Emulation Modes.

Additionally, the FTDI D2XX driver is required to be installed on the system. Please refer to D2XX
Programmer‟s Guide for APIs available in D2XX driver. The sample code has been compiled under Visual
Studio 2008.

2.3.1 Definitions and Functions

//

// Define the global variables and const variables

//

const BYTE MSB_FALLING_EDGE_CLOCK_BYTE_IN = '\x24';

const BYTE MSB_FALLING_EDGE_CLOCK_BYTE_OUT = '\x11';

const BYTE MSB_RISING_EDGE_CLOCK_BIT_IN = '\x22';

FT_STATUS ftStatus; //Status defined in D2XX to indicate operation result

FT_HANDLE ftHandle; //Handle of FT2232H device port

BYTE OutputBuffer[1024]; //Buffer to hold MPSSE commands and data to be sent to FT2232H

BYTE InputBuffer[1024]; //Buffer to hold Data bytes to be read from FT2232H

DWORD dwClockDivisor = 0x0095; //Value of clock divisor, SCL Frequency = 60/((1+0x0095)*2) (MHz) = 200khz

DWORD dwNumBytesToSend = 0; //Index of output buffer

DWORD dwNumBytesSent = 0, dwNumBytesRead = 0, dwNumInputBuffer = 0;

//

// Below function will setup the START condition for I2C bus communication. First, set SDA, SCL high and ensure hold time

// requirement by device is met. Second, set SDA low, SCL high and ensure setup time requirement met. Finally, set SDA, SCL low

//

void HighSpeedSetI2CStart(void)

{

DWORD dwCount;

http://www.ftdichip.com/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Documents/ProgramGuides/D2XX_Programmer%27s_Guide(FT_000071).pdf
http://www.ftdichip.com/Documents/ProgramGuides/D2XX_Programmer%27s_Guide(FT_000071).pdf

 Copyright © 2011 Future Technology Devices International Limited 6

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

for(dwCount=0; dwCount < 4; dwCount++) // Repeat commands to ensure the minimum period of the start hold time ie 600ns is achieved

{

 OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

 OutputBuffer[dwNumBytesToSend++] = '\x03'; //Set SDA, SCL high, WP disabled by SK, DO at bit „1‟, GPIOL0 at bit „0‟

 OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

}

for(dwCount=0; dwCount < 4; dwCount++) // Repeat commands to ensure the minimum period of the start setup time ie 600ns is achieved

{

 OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

 OutputBuffer[dwNumBytesToSend++] = '\x01'; //Set SDA low, SCL high, WP disabled by SK at bit „1‟, DO, GPIOL0 at bit „0‟

 OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

}

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Set SDA, SCL low, WP disabled by SK, DO, GPIOL0 at bit „0‟

OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

}

//

// Below function will setup the STOP condition for I2C bus communication. First, set SDA low, SCL high and ensure setup time

// requirement by device is met. Second, set SDA, SCL high and ensure hold time requirement met. Finally, set SDA, SCL as input

// to tristate the I2C bus.

//

void HighSpeedSetI2CStop(void)

{

DWORD dwCount;

for(dwCount=0; dwCount<4; dwCount++) // Repeat commands to ensure the minimum period of the stop setup time ie 600ns is achieved

{

 OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

 OutputBuffer[dwNumBytesToSend++] = '\x01'; //Set SDA low, SCL high, WP disabled by SK at bit „1‟, DO, GPIOL0 at bit „0‟

 OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

}

for(dwCount=0; dwCount<4; dwCount++) // Repeat commands to ensure the minimum period of the stop hold time ie 600ns is achieved

{

 OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

 OutputBuffer[dwNumBytesToSend++] = '\x03'; //Set SDA, SCL high, WP disabled by SK, DO at bit „1‟, GPIOL0 at bit „0‟

 OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

}

//Tristate the SCL, SDA pins

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Set WP disabled by GPIOL0 at bit „0‟

OutputBuffer[dwNumBytesToSend++] = '\x10'; //Set GPIOL0 pins as output with bit „1‟, SK, DO and other pins as input with bit „0‟

}

//

// Below function will send a data byte to I2C-bus EEPROM 24LC256, then check if the ACK bit sent from 24LC256 device can be received.

// Return true if data is successfully sent and ACK bit is received. Return false if error during sending data or ACK bit can‟t be received

//

BOOL SendByteAndCheckACK(BYTE dwDataSend)

{

FT_STATUS ftStatus = FT_OK;

OutputBuffer[dwNumBytesToSend++] = MSB_FALLING_EDGE_CLOCK_BYTE_OUT; //Clock data byte out on –ve Clock Edge MSB first

 Copyright © 2011 Future Technology Devices International Limited 7

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

OutputBuffer[dwNumBytesToSend++] = '\x00';

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Data length of 0x0000 means 1 byte data to clock out

OutputBuffer[dwNumBytesToSend++] = dwDataSend; //Add data to be send

//Get Acknowledge bit from EEPROM

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Set SCL low, WP disabled by SK, GPIOL0 at bit „0‟

OutputBuffer[dwNumBytesToSend++] = '\x11'; //Set SK, GPIOL0 pins as output with bit „1‟, DO and other pins as input with bit „0‟

OutputBuffer[dwNumBytesToSend++] = MSB_RISING_EDGE_CLOCK_BIT_IN; //Command to scan in ACK bit , -ve clock Edge MSB first

OutputBuffer[dwNumBytesToSend++] = '\x0'; //Length of 0x0 means to scan in 1 bit

OutputBuffer[dwNumBytesToSend++] = '\x87'; //Send answer back immediate command

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); //Send off the commands

dwNumBytesToSend = 0; //Clear output buffer

//Check if ACK bit received, may need to read more times to get ACK bit or fail if timeout

ftStatus = FT_Read(ftHandle, InputBuffer, 1, &dwNumBytesRead); //Read one byte from device receive buffer

if ((ftStatus != FT_OK) || (dwNumBytesRead == 0))

{ return FALSE; /*Error, can't get the ACK bit from EEPROM */ }

else

 if (((InputBuffer[0] & BYTE('\x1')) != BYTE('\x0'))) //Check ACK bit 0 on data byte read out

 { return FALSE; /*Error, can't get the ACK bit from EEPROM */ }

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x02'; //Set SDA high, SCL low, WP disabled by SK at bit '0', DO, GPIOL0 at bit '1'

OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit „1‟, other pins as input with bit „0‟

return TRUE;

}

2.3.2 Initialise EEPROM Device

The following sample code will demonstrate how to open the FT2232H device handle, initialize the device,
enable the MPSSE mode and set basic USB related settings based on D2xx APIs. Then a bad command is
sent to synchronize the MPSSE channel. This is followed by configuring the MPSSE to communicate with
24LC256 I2C–bus device (sets serial clock and pin direction/values).

DWORD dwCount;

//Try to open the FT2232H device port and get the valid handle for subsequent access

char SerialNumBuf[64];

ftStatus = FT_ListDevices((PVOID)0,& SerialNumBuf, FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER);

ftStatus = FT_OpenEx((PVOID) SerialNumBuf, FT_OPEN_BY_SERIAL_NUMBER, &ftHandle);

if (ftStatus == FT_OK)

{ // Port opened successfully

ftStatus |= FT_ResetDevice(ftHandle); //Reset USB device

//Purge USB receive buffer first by reading out all old data from FT2232H receive buffer

ftStatus |= FT_GetQueueStatus(ftHandle, &dwNumInputBuffer); // Get the number of bytes in the FT2232H receive buffer

if ((ftStatus == FT_OK) && (dwNumInputBuffer > 0))

FT_Read(ftHandle, &InputBuffer, dwNumInputBuffer, &dwNumBytesRead); //Read out the data from FT2232H receive buffer

ftStatus |= FT_SetUSBParameters(ftHandle, 65536, 65535); //Set USB request transfer size

ftStatus |= FT_SetChars(ftHandle, false, 0, false, 0); //Disable event and error characters

ftStatus |= FT_SetTimeouts(ftHandle, 0, 5000); //Sets the read and write timeouts in milliseconds for the FT2232H

ftStatus |= FT_SetLatencyTimer(ftHandle, 16); //Set the latency timer

ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x00); //Reset controller

ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x02); //Enable MPSSE mode

if (ftStatus != FT_OK)

{ /*Error on initialize MPSEE of FT2232H*/ }

Sleep(50); // Wait for all the USB stuff to complete and work

 Copyright © 2011 Future Technology Devices International Limited 8

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

//

// Below codes will synchronize the MPSSE interface by sending bad command „xAA‟ and checking if the echo command followed by

// bad command „AA‟ can be received, this will make sure the MPSSE interface enabled and synchronized successfully

//

OutputBuffer[dwNumBytesToSend++] = '\xAA'; //Add BAD command „xAA‟

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); // Send off the BAD commands

dwNumBytesToSend = 0; //Clear output buffer

do{

ftStatus = FT_GetQueueStatus(ftHandle, &dwNumInputBuffer); // Get the number of bytes in the device input buffer

}while ((dwNumInputBuffer == 0) && (ftStatus == FT_OK)); //or Timeout

bool bCommandEchod = false;

ftStatus = FT_Read(ftHandle, &InputBuffer, dwNumInputBuffer, &dwNumBytesRead); //Read out the data from input buffer

for (dwCount = 0; dwCount < dwNumBytesRead - 1; dwCount++) //Check if Bad command and echo command received

{

if ((InputBuffer[dwCount] == BYTE('\xFA')) && (InputBuffer[dwCount+1] == BYTE('\xAA')))

{

bCommandEchod = true;

 break;

}

}

if (bCommandEchod == false)

{ /*Error, can‟t receive echo command , fail to synchronize MPSSE interface;*/ }

//

//Configure the MPSSE settings for I2C communication with 24LC256

//

OutputBuffer[dwNumBytesToSend++] = '\x8A'; //Ensure disable clock divide by 5 for 60Mhz master clock

OutputBuffer[dwNumBytesToSend++] = '\x97'; //Ensure turn off adaptive clocking

OutputBuffer[dwNumBytesToSend++] = '\x8D'; //Enable 3 phase data clock, used by I2C to allow data on both clock edges

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); // Send off the commands

dwNumBytesToSend = 0; //Clear output buffer

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x03'; //Set SDA, SCL high, WP disabled by SK, DO at bit „1‟, GPIOL0 at bit „0‟

OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit ‟, other pins as input with bit „‟

// The SK clock frequency can be worked out by below algorithm with divide by 5 set as off

// SK frequency = 60MHz /((1 + [(1 +0xValueH*256) OR 0xValueL])*2)

OutputBuffer[dwNumBytesToSend++] = '\x86'; //Command to set clock divisor

OutputBuffer[dwNumBytesToSend++] = dwClockDivisor & '\xFF'; //Set 0xValueL of clock divisor

OutputBuffer[dwNumBytesToSend++] = (dwClockDivisor >> 8) & '\xFF'; //Set 0xValueH of clock divisor

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); // Send off the commands

dwNumBytesToSend = 0; //Clear output buffer

Sleep(20); //Delay for a while

//Turn off loop back in case

OutputBuffer[dwNumBytesToSend++] = '\x85'; //Command to turn off loop back of TDI/TDO connection

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); // Send off the commands

dwNumBytesToSend = 0; //Clear output buffer

Sleep(30); //Delay for a while

}

 Copyright © 2011 Future Technology Devices International Limited 9

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

2.3.3 Program EEPROM – Random Byte Address

This example illustrates the data transfer sequence on the I2C–bus required to write to the 24LC256 at
random byte address. This is shown in Figure 5. The sample code below demonstrates how to implement
these data transfer sequences based on MPSSE commands. An oscilloscope is used to capture the
resultant waveforms. These are shown in Figure 6 for reference.

Figure 5 Data transfer sequence for EEPROM random address program

BOOL bSucceed = TRUE;

BYTE ByteAddressHigh = 0x00;

BYTE ByteAddressLow = 0x80; //Set program address is 0x0080 as example

BYTE ByteDataToBeSend = 0x5A; //Set data byte to be programmed as example

HighSpeedSetI2CStart(); //Set START condition for I2C communication

bSucceed = SendByteAndCheckACK(0xAE); //Set control byte and check ACK bit. bit 4-7 of control byte is control code,

// bit 1-3 of „111‟ as block select bits, bit 0 of „0‟represent Write operation

bSucceed = SendByteAndCheckACK(ByteAddressHigh); //Send high address byte and check if ACK bit is received

bSucceed = SendByteAndCheckACK(ByteAddressLow); //Send low address byte and check if ACK bit is received

bSucceed = SendByteAndCheckACK(ByteDataToBeSend); //Send data byte and check if ACK bit is received

HighSpeedSetI2CStop(); //Set STOP condition for I2C communication

//Send off the commands

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

dwNumBytesToSend = 0; //Clear output buffer

Sleep(50); //Delay for a while to ensure EEPROM program is completed

Fig 6-1 Sending control byte 0xAE Fig 6-2 Sending high address byte 0x00

Fig 6-3 Sending low address byte 0x80 Fig 6-4 Sending data byte 0x5A

Figure 6 Waveforms for EEPROM random address program

 Copyright © 2011 Future Technology Devices International Limited 10

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

2.3.4 Read EEPROM – Random Byte address

This example illustrates the data transfer sequence on the I2C–bus required to read from the 24LC256 at
random byte addresses. The data transfer sequence on I2C–bus to read 24LC256 device with random
byte address is shown in Figure 7. The sample code below demonstrates how to implement these data
transfer sequences based on MPSSE commands. An oscilloscope is used to capture the resultant
waveforms. These are shown in Figure 8 for reference.

Figure 7 Data transfer sequence for EEPROM random address read

BOOL bSucceed = TRUE;

BYTE ByteAddressHigh = 0x00;

BYTE ByteAddressLow = 0x80; //Set read address is 0x0080 as example

BYTE ByteDataRead; //Data to be read from EEPROM

//Purge USB receive buffer first before read operation

ftStatus = FT_GetQueueStatus(ftHandle, &dwNumInputBuffer); // Get the number of bytes in the device receive buffer

if ((ftStatus == FT_OK) && (dwNumInputBuffer > 0))

FT_Read(ftHandle, &InputBuffer, dwNumInputBuffer, &dwNumBytesRead); //Read out all the data from receive buffer

HighSpeedSetI2CStart(); //Set START condition for I2C communication

bSucceed = SendByteAndCheckACK(0xAE); //Set control byte and check ACK bit. bit 4-7 of control byte is control code,

// bit 1-3 of „111‟ as block select bits, bit 0 of „0‟represent Write operation

bSucceed = SendByteAndCheckACK(ByteAddressHigh); //Send high address byte and check if ACK bit is received

bSucceed = SendByteAndCheckACK(ByteAddressLow); //Send low address byte and check if ACK bit is received

HighSpeedSetI2CStart(); //Set START condition for I2C communication

bSucceed = SendByteAndCheckACK(0xAF); //Set control byte and check ACK bit. bit 4-7 as „1010‟ of control byte is control code,

// bit 1-3 of „111‟ as block select bits, bit 0 as „1‟represent Read operation

//

// Read the data from 24LC256 with no ACK bit check

//

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Set SCL low, WP disabled by SK, GPIOL0 at bit „‟

OutputBuffer[dwNumBytesToSend++] = '\x11'; //Set SK, GPIOL0 pins as output with bit ‟‟, DO and other pins as input with bit „‟

OutputBuffer[dwNumBytesToSend++] = MSB_FALLING_EDGE_CLOCK_BYTE_IN; //Command to clock data byte in on –ve Clock Edge MSB first

OutputBuffer[dwNumBytesToSend++] = '\x00';

OutputBuffer[dwNumBytesToSend++] = '\x00'; //Data length of 0x0000 means 1 byte data to clock in

OutputBuffer[dwNumBytesToSend++] = MSB_RISING_EDGE_CLOCK_BIT_IN; //Command to scan in acknowledge bit , -ve clock Edge MSB first

OutputBuffer[dwNumBytesToSend++] = '\x0'; //Length of 0 means to scan in 1 bit

OutputBuffer[dwNumBytesToSend++] = '\x87'; //Send answer back immediate command

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent); //Send off the commands

dwNumBytesToSend = 0; //Clear output buffer

//Read two bytes from device receive buffer, first byte is data read from EEPROM, second byte is ACK bit

ftStatus = FT_Read(ftHandle, InputBuffer, 2, &dwNumBytesRead);

ByteDataRead = InputBuffer[0]; //Return the data read from EEPROM

OutputBuffer[dwNumBytesToSend++] = '\x80'; //Command to set directions of lower 8 pins and force value on bits set as output

 Copyright © 2011 Future Technology Devices International Limited 11

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

OutputBuffer[dwNumBytesToSend++] = '\x02'; //Set SDA high, SCL low, WP disabled by SK at bit '0', DO, GPIOL0 at bit '1'

OutputBuffer[dwNumBytesToSend++] = '\x13'; //Set SK,DO,GPIOL0 pins as output with bit ‟‟, other pins as input with bit „‟

HighSpeedSetI2CStop(); //Set STOP condition for I2C communication

//Send off the commands

ftStatus = FT_Write(ftHandle, OutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

dwNumBytesToSend = 0; //Clear output buffer

Fig 8-1 Sending control byte 0xAE Fig 8-2 Sending high address byte 0x00

Fig 8-3 Sending low address byte 0x80 Fig 8-4 Sending control byte 0xAF Fig 8-5 Read data byte 0x5A

Figure 8 Waveforms for EEPROM random address read

2.4 Using Channel B Requirements

If it is necessary to use Channel B of FT2232H MPSSE interface to connect with I2C-bus 24LC256 device,
the following changes are necessary:

 Re-map connection pins from ADBUS 0,1,2,4 to BDBUS 0,1,2,4 accordingly (refer to Table 1).
 Open the MPSSE port with device index and serial number especial for Channel B and get according

handle.

 Copyright © 2011 Future Technology Devices International Limited 12

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

3 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1,2 Seaward Place, Centurion Business Park

Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com

E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA

Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com

E-Mail (Support) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
Shanghai, 200051

China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com

E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/

 Copyright © 2011 Future Technology Devices International Limited 13

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

 Copyright © 2011 Future Technology Devices International Limited 14

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Legal Disclaimer:

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future
Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety,
regulatory and system-level performance requirements. All application-related information in this document (including
application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has
taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability
for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or
safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from
any and all damages, claims, suits or expense resulting from such use. This document is subject to change without
notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document.
Neither the whole nor any part of the information contained in, or the product described in this document, may be
adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder.
Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH,
United Kingdom. Scotland Registered Company Number: SC1366400

 Copyright © 2011 Future Technology Devices International Limited 15

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Appendix A - References

AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes

AN2232C-02_FT2232CBitMode

D2XX Programmer‟s Guide

Datasheet for FT2232H V202

Datasheet for Microchip 24LC256 – 2K I2C Serial EEPROM

http://www.ftdichip.com/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Documents/AppNotes/AN2232C-02_FT2232CBitMode.pdf
http://www.ftdichip.com/Documents/ProgramGuides/D2XX_Programmer%27s_Guide(FT_000071).pdf
http://www.ftdichip.com/Documents/DataSheets/DS_FT2232H_V202.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21203M.pdf

 Copyright © 2011 Future Technology Devices International Limited 16

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Appendix B - List of Figures and Tables

List of Figures

Figure 1 Data transfer on I
2
C bus ... 2

Figure 2 START and STOP conditions .. 3

Figure 3 Acknowledge on the I
2
C-bus ... 3

Figure 4 FT2232H interface with 24LC256... 4

Figure 5 Data transfer sequence for EEPROM random address program .. 9

Figure 6 Waveforms for EEPROM random address program ... 9

Figure 7 Data transfer sequence for EEPROM random address read ... 10

Figure 8 Waveforms for EEPROM random address read .. 11

List of Tables

Table 1 Pin Description of FT2232H connecting with 24LC256 .. 5

 Copyright © 2011 Future Technology Devices International Limited 17

Document Reference No.: FT_000137
 Interfacing FT2232H Hi-Speed Devices To I2C Bus Application Note AN_113

 Version 1.1

Clearance No.: FTDI# 90

Appendix C - Revision History

Revision History

draft Initial draft 1st, April, 2009

1.0 First Release 8th, May, 2009

1.1 Updated section 2.4 to remove third bullet point as this step 25th Feb, 2011

was not required when changing from channel A to channel B.

	1 Introduction
	1.1 I2C Bus Introduction

	2 Sample Project with FT2232H
	2.1 Overview
	2.2 Sample Circuit
	2.3 Sample Code
	2.3.1 Definitions and Functions
	2.3.2 Initialise EEPROM Device
	2.3.3 Program EEPROM – Random Byte Address
	2.3.4 Read EEPROM – Random Byte address

	2.4 Using Channel B Requirements

	3 Contact Information
	Legal Disclaimer:
	Appendix A - References
	Appendix B - List of Figures and Tables
	Appendix C - Revision History

