

Future Technology Devices International Limited (FTDI)

Unit 1,2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 201423/10/2014 Future Technology Devices International Limited

AN_330

VI800A TTLU 232U N485U Arduino

Library Sample App

Document Reference No.:FT_001067

Version: 1.0

Issue Date: 2014_10_23

The objective of this document is to enable users to become familiar with the usage

of the VM800P add-on modules Arduino library.

mailto:support1@ftdichip.com
http://www.ftdichip.com/

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Table of Contents

1 Introduction .. 4

1.1 Audience ... 4

1.2 Scope .. 4

1.3 Overview ... 4

1.4 Hardware requirement .. 6

1.5 Software requirement ... 6

2 Install Library ... 7

2.1 Another FTDI library is present ... 7

2.2 Automatic Installation ... 7

2.3 Manual Installation ... 8

3 Library Folder Structure .. 9

3.1 FT_VI800A class .. 11

3.2 APIs .. 11

4 Library Usage .. 14

4.1 Overview ... 14

4.2 Initialization .. 14

4.3 Enhanced Flow Control .. 16

4.3.1 Enhanced Software Flow Control ... 16

4.3.2 Enhanced Hardware Flow control ... 18

4.3.3 Enhanced RS485 Flow Control... 18

4.4 Receive FIFO Status .. 19

4.5 Interrupts .. 19

4.6 Baud Rate .. 20

5 Setup steps ... 22

5.1 Hardware Setup and Pin Connections 22

5.2 Library Sketches .. 25

6 VI800A-232U Examples .. 30

6.1 Setup and Run ... 30

6.2 VI800A-232U to VI800A-232U Software Flow Control 32

6.2.1 Example 1 ... 32

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

3
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2.2 Example 2 ... 35

6.2.3 Example 3 ... 36

6.3 VI800A-232U to VI800A-232U Hardware Flow Control 39

6.3.1 Example 1 ... 39

6.3.2 Example 2 ... 40

6.4 VI800A-232U to PC ... 42

6.4.1 Software Flow with Tera Term ... 43

6.4.2 Hardware Flow with Tera Term .. 44

7 VI800A-TTLU Examples ... 46

7.1 Setup and Run ... 46

7.2 VI800A-TTLU to VI800A-TTLU Software Flow Control 47

7.3 VI800A-TTLU to VI800A-TTLU Hardware Flow Control 47

7.4 VI800A-TTLU to PC .. 47

8 VI800A-N485U Examples .. 49

8.1 Code Explanation ... 49

8.1.1 Sender .. 49

8.1.2 Receiver ... 50

9 Contact Information .. 56

Appendix A– References .. 57

Document References .. 57

Acronyms and Abbreviations ... 57

Appendix B – List of Tables & Figures 58

List of Tables ... 58

List of Figures .. 58

Appendix C– Revision History .. 60

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

4
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

1 Introduction

This application demonstrates sample applications for VM800P add-on-modules. The application

gives a basic understanding of the serial add-on-board’s features - transmit/receive, LED toggling.

The sample application has been written for the Arduino Pro platform.

Users can review the source code of the sample application first, and then run the code to observe

the effects. Editing the code is also encouraged to help learn the features of the VM800P add-on-

board modules.

This document introduces how to set up and use the sample application with the FTDI VM800P

development kits in relation to an Arduino Pro platform.

For VM800P add-on board development board details please refer to datasheets:

For TTLU : DS_VI800A-TTLU.pdf

For 232U : DS_VI800A-232U.pdf

For N485U : DS_VI800A-N485U.pdf

To learn more about Arduino Pro and its IDE, please check http://www.arduino.cc

1.1 Audience

This document assumes the audience has read the datasheet of the relevant VM800P add-on-

board. In addition, familiarity with the C/C++programming language is necessary to understand

the sample application source code. To understand the SPI interface of the Arduino Pro Platform,

knowledge of the Arduino Pro hardware and IDE is required.

1.2 Scope

The Sample Application referenced in this document is created in the Arduino IDE and runs on the

Arduino Pro built into the VM800P along with a specific add-on-board. A full project containing

source code and compiled objects is provided.

1.3 Overview

Hardware

The VM800P plug-in modules are capable of several communication setups: PC to module, simple

loopback, same module to module, and module to other devices using the same communication

standard. The diagram below gives the basic hardware setup for PC to module communication and

loopback self-test.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_VI800A-TTLU.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_VI800A-232U.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_VI800A-N485U.pdf
http://www.arduino.cc/

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

5
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 1-1 : Block Diagram of Setup

Architecture

The VM800P plug-in module library encapsulates the hardware communication, therefore, in-depth

knowledge of the plug-in modules are not required.

Figure 1-2 : Architecture diagram

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

6
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

1.4 Hardware requirement

The examples presented in this document use the following hardware, refer to the individual

example for the specific items required.

 One of each of the FTDI VM800P Boards, two boards are required for same module
communication.

 Two MicroB USB cables to provide power to the VM800P board

 Two of each module: VI800A-N485U, VI800A-232U, and VI800A-TTLU

 One TTL-232R cable(USB to TTL Serial Cable 5.0V)

 One RS232-USB cable

1.5 Software requirement

 Arduino IDE version 1.0.5 or later

 VM800P plug-in module Arduino Library release package.

 The open source virtual terminal Tera Term is used for plug-in module to PC communication.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
http://www.ftdichip.com/Products/Modules/VM800P.html
http://arduino.cc/en/Main/Software
http://ttssh2.sourceforge.jp/

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

7
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

2 Install Library

2.1 Another FTDI library is present

If there is an existing FTDI library in the library folder, simply extract the library files and put the

new files/folders to their respective location in the existing library directory.

2.2 Automatic Installation

This method will install the library by the IDE and the library itself can be a ZIP file or unzipped

folder. This method will install the library to the location specified in the IDE’s Sketchbook

location. The default directory, on OSX, would be at "~/Documents/Arduino/". On Windows, it

would be at "My Documents\Arduino\". For more information on library installation, please refer to

http://arduino.cc/en/Guide/Libraries.

Figure 2-1 : Arduino IDE – add library option

In the Arduino IDE, click “Sketch”, hover over the “Import Library” option in the drop down menu,

and then click the “Add Library…” item.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
http://arduino.cc/en/Guide/Libraries

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

8
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 2-2 : Arduino IDE - library selection browser

Navigate to the downloaded FTDI library file or unzipped folder and open it. The IDE will

automatically install the files to the library folder of the Sketchbook location.

2.3 Manual Installation

To manually install the library, simply unzip the library and put the FTDI folder in the library folder

of the IDE's Sketchbook location. The Sketchbook location is in the preferences window accessed

by choosing File->Preferences. Users will need to make a folder called “libraries” in the

Sketchbook location if it doesn’t contain one.

Figure 2-3 : Library Installation - Manual Installation

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

9
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

3 Library Folder Structure

The below contents can be found in the release package:

Figure 3-1 : FTDI Library folder contents

Example Folder: The examples folder contains example sketches in each of the respective
platform sub folder. TTLU module examples are presented in FT_VI800A_TTLU folder, 232U

module examples are presented in FT_VI800A_232U and N485U module examples are presented
in FT_VI800A_N485U folder.

Figure 3-2 : FTDI Library - examples folder

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

10
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Hardware Folder: The SC16IS760IBS folder contains hardware specific macros used by the

library.

Figure 3-3 : FTDI Library - hardware folder

Libraries folder: The FT_VI800A folder contains the FT_VI800A class which implements APIs to
access the hardware functionalities of the VI800A plug-in modules.

Figure 3-4 : FTDI Library - libraries folder

Platform headers: The following header files include platform specific macros. An application

needs to include one of the respective platform header files.

Figure 3-5 : FTDI Library - platform headers

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

11
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

3.1 FT_VI800A class

The FT_VI800A.h in FTDI\Libraries\FT_VI800A folder contains the FT_VI800A class which

implements APIs to access and utilize the functionalities for the TTLU, 232U and N485U plug-in

modules. The following table has the entire public accessible API in the library and their

condensed description. Please refer to the FT_VI800A.h for the complete description of respective

API along with any limitations, remarks and implications.

3.2 APIs

Prototype Description

void GetVersion(uint8_t &Major, uint8_t &Minor, uint8_t &Build);
Get the Major, Minor and
Build version of the
library.

FT_Status Init(uint8_t SSpin);
Overloaded initialization
API with default values.

FT_Status Init(uint8_t SSpin, uint32_t BaudRate, FT_ Parity_Type
parityType, FT_ Stop_Bit_Length stopBitLength, FT_Word_Length
wordLength);

Overloaded Initialization
API with user specified
values.

uint8_t Read();
Read a single byte from
receive FIFO.

FT_Status Read(uint8_t* array, uint8_t maxBytesToRead, uint32_t
&numOfBytesRead);

Read n numbers of bytes
from receive FIFO.

uint8_t Write(uint8_t data);
Write a byte of data to
the transmit FIFO.

uint8_t Write(uint8_t* array, uint32_t size);
Write n numbers of bytes
to the transmit FIFO.

void SetDataFormat(FT_Parity_Type parityType, FT_Stop_Bit_Length
stopBitLength, FT_Word_Length wordLength);

Set the communication
data format.

void SetBaudRate(uint32_t baudrate);
Set the communication
baud rate.

uint8_t GetTransmitFIFOFreeSpace();
Get how much free space
in the transmit FIFO.

uint8_t GetReceiveFIFOFillLevel();
Get the fill level of the
receive FIFO.

void SetInterrupts(uint8_t interrupts);
Enable or disable IRQ

interrupts.

void EnableSleepMode(FT_OPTIONS option);
Enable or disable sleep

mode.

void SWReset(); Perform a device reset.

uint8_t GetInterrupts(void);
Get all interrupts from
the device.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

12
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Prototype Description

FT_Status SetFlowControl(FT_FLOW_TYPE FlowControlType, uint8_t
param1, uint8_t param2, uint8_t param3, uint8_t param4, uint8_t
param5, uint8_t param6, uint8_t param7, uint8_t param8);

Initialize and use an
enhanced flow control.

void SetInternalLoopBack(FT_OPTIONS option);
Enable or disable internal

loop back mode.

void EnableFIFO(FT_OPTIONS option);
Enable or disable
transmit and receive
FIFO.

void EnableTransmitter(FT_OPTIONS option);
Enable or disable

transmitter.

void EnableReceiver(FT_OPTIONS option);
Enable or disable
receiver.

uint8_t GetReceiveFIFOStatus(void);
Get the status of the

FIFO.

void SendXON1SpecialCharacter();
Send a XON1 special
character for enhanced
software flow control.

void SendXON2SpecialCharacter();

Send a XON2 special

character for enhanced
software flow control.

void SendXOFF1SpecialCharacter();
Send a XOFF1 special
character for enhanced

software flow control.

void SendXOFF2SpecialCharacter();

Send a XOFF2 special
character for enhanced
hardware and software
flow control.

uint8_t ReadScratchPad(void);
Read the scratch pad

register.

void EnableRTSOutput(FT_OPTIONS option);
Enable/disable the RTS
signal pin.

bool isCTSActive(void);
Check the status of the

CTS pin.

void WriteToScratchPad(uint8_t value);
Write to the scratch pad

register.

FT_Status SetFIFOInterruptTriggerLevel(uint8_t
TransmitFIFOInterruptLevel, uint8_t ReceiveFIFOInterruptLevel);

Set the FIFO interrupt
trigger level.

void
SetPresetFIFOInterruptTriggerLevel(FT_Preset_RX_FIFO_Trigger_Level
ReceiveFIFOInterruptLevel, FT_Preset_TX_FIFO_Trigger_Level
TransmitFIFOInterruptLevel);

Set the FIFO interrupt

trigger level with pre-set
value

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

13
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Prototype Description

void SetIOPinDirection(uint8_t Direction);
Set the GPIO pin
direction.

uint8_t GetIOPinDirection(void);
Get the GPIO pin
direction.

void SetIOPinState(uint8_t State);
Set the output GPIO pin
state.

void StartTransmitLineBreak(void);
Continuously send a line
break to the recipient.

void StopTransmitLineBreak(void);
Stop sending line breaks
to the recipient.

bool isDataInReceiver(void);
Check to see if receiver
FIFO has data in it.

bool isTransmitFIFOandShiftRegisterEmpty(void);

Check to see if both of
the transmit FIFO and the
transmit shift register are
empty.

bool isTransmitFIFOEmpty(void);
Check to see if the
transmit FIFO is empty or

not.

void clearFIFO(void);
Clear the receive and
transmit FIFO.

void Exit(void); End the SPI

Table 3-1 - APIs description

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

14
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

4 Library Usage

4.1 Overview

The VM800P plug-in module Arduino Library has greatly reduced the amount of hardware specifics
that the user needs to know. The following sections describe the simple setup for the hardware-
assisted enhanced flow controls.

4.2 Initialization

Figure 4-1 : Library Initialization

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

15
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

The following setup is the same for the TTLU, N485U and 232U modules.

Library Include:

/* Arduino standard includes */
#include "SPI.h"
#include "Wire.h"

/* VM8xxpxx plug-in library includes. Include the appropriate header file*/
#include "FT_VI800A_TTLU.h" or #include "FT_VI800A_232U.h" or #include "FT_VI800A_N485U.h"

Plug-in module Global Object instantiation:

FT_VI800A VI800A;

Arduino SPI pin configuration:

void setup()
{
 /* Initialize any pin mode*/

 /* Initialize serial print related functionality, optional*/
 Serial.begin(9600);

 VI800A.Init(Slave pin); or VI800A.Init(/*baud rate and data format*/);

 VI800A.SetFlowControl(…); //Configure flow control

 //Optional functions or required functions as described in the following sections.

}

The general VM800P plug-in module initialization consists of the global library object instantiation,

call one of the overloaded Init() functions, setup flow control using the SetFlowControl(…) function,

and any optional or required functions for the flow control.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

16
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

4.3 Enhanced Flow Control

The VM800P plug-in modules can use one or more hardware-assisted, enhanced flow controls.

The following table shows which enhanced flow controls can be used by the specific plug-in

module. Specific enhanced flow control setup will be described with details in the following

sections.

Table 4-1 - Modules and Flow Controls

2.1.1 4.3.1 Enhanced Software Flow Control

With enhanced software flow control, if the receiver is instructed to control the data flow with a

certain special character(s) then the receiving device will automatically compare the incoming data

with the XOFF1 and/or XOFF2 special character(s). Matching special character(s) are automatically

discarded. When the correct combination of XOFF character(s) are detected, the data transmission

is halted after the completion of receiving the current character till the correct combination of XON

special character(s) are received.

If the transmitter is instructed to send a certain combination of special character(s) then the

device will automatically monitors the receive FIFO according to the trigger levels set by the 7th

and/or 8th parameter of the initialization function. The correct combination of XON1 and/or XON2

special character(s) are sent when the FIFO level is below the resume trigger level and the XOFF1

and/or XOFF2 special character(s) are sent when the FIFO level is above the halt trigger level.

To use enhanced software flow control, specify the following parameters in the SetFlowControl
function:

Parameter 1: FT_SW_Flow,
Parameter 2: one group in the FT_SW_Flow_Combination table,
Parameter 3: an 8-bit value of the XON1 special character,

Parameter 4: an 8-bit value of the XON2 special character,
Parameter 5: an 8-bit value of the XOFF1 special character,
Parameter 6: an 8-bit value of the XOFF2 special character,
Parameter 7: one entry in FT_Flow_Trigger table,
Parameter 8: the halt level if FT_Use_TCR_RX_Trigger option was used for the 7th parameter

or the pre-set trigger level in the FT_Preset_RX_FIFO_Trigger_Level table if
the 7th parameter was FT_Use_FCR_RX_Trigger.

Parameter 9: the resume level if the FT_Use_TCR_RX_Trigger option was used for 7th
parameter.

The valid values of the trigger levels for FT_Use_TCR_RX_Trigger option are from 0 to 60, with a

granularity of 4. The halt level has to be greater than the resume level else the SetFlowControl will

return an error.

Software

manages flow
control

Enhanced
Software Flow

Control

Enhanced
Hardware Flow

Control

Enhanced Auto
RS485 Flow

Control

VI800A-232U x x x -

VI800A-TTLU x x x -

VI800A-N485U x - - x

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

17
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

4.3.1.1 Enhanced Software Flow Control Flow

Combination

The software flow control combination parameter specifies the special character(s) that the device

will automatically send to the receiver when the FIFO has reached a FIFO trigger level and/or stop

data transmission when the correct combination of special character(s) are received. There are

two flow groups in the FT_SW_Flow_Combination table:

Group 1: The first 4 options in the table, FT_SW_Flow_Combination[0:3], are intended for the

transmit flow control and the next 3 options, FT_SW_Flow_Combination[4:6], are intended for the

receive flow control. Users can bitwise AND one in each of these two subgroups as the parameter

value.

Group 2: The pre-set flow combinations of FT_SW_Flow_Combination[7:10].

4.3.1.2 Receive FIFO Trigger Level

If FIFO is enabled and one of the flow combinations referred to in the previous section is used then

the special characters are sent based on the receive FIFO level set by the 8th and/or 9th parameter.

FT_Use_No_RX_Trigger option specifies no FIFO trigger will be used. This option is useful if the

device will act purely as a sender or only a small amount of data will be received. The transmit

and receive flow controls are not mutually exclusive so FT_SW_Flow_Combination[4:6] options can

still be used to instruct the receiver to check for the incoming special character(s) to stop or start

the data transmission.

typedef enum FT_SW_Flow_Combination{
NO_TX_FLOW = 0x00, //no transmit flow control
TX_XON1_XOFF1 = 0x08, //transmit xon1, xoff1
TX_XON2_XOFF2 = 0x04, //transmit xon2, xoff2
TX_XON1_XON2_XOFF1_XOFF2 = 0x0c, //transmit xon1 and xon2, xoff1 and xoff2
NO_RX_FLOW = 0x00, //no receive flow control
RX_XON1_XOFF1 = 0x02, //receiver compares xon1, xoff1

RX_XON2_XOFF2 = 0x01, //receiver compares xon2, xoff2
TX_XON1_XOFF1_RX_XON1_OR_XON2_XOFF1_OR_XOFF2 = 0x0b,//transmit xon1,

xoff1 and receiver compares xon1 or xon2, xoff1 or xoff2
TX_XON2_XOFF2_RX_XON1_OR_XON2_XOFF1_OR_XOFF2 = 0x07,//transmit xon2,

xoff2 and receiver compares xon1 or xon2, xoff1 or xoff2
TX_XON1_XON2_XOFF1_XOFF2_RX_XON1_XON2_XOFF1_XOFF2 = 0x0f,//transmit xon1

and xon2, xoff1 and xoff2 and receiver compares xon1 and xon2, xoff1 and xoff2

NO_TX_FLOW_RX_XON1_XON2_XOFF1_XOFF2 = 0x03,//no transmit flow control but
receiver compares xon1 and xon2, xoff1 and xff2

}FT_SW_Flow_Combination;

typedef enum FT_Flow_Trigger{
 FT_Use_No_RX_Trigger=0,
 FT_Use_TCR_RX_Trigger=1,
 FT_Use_FCR_RX_Trigger=2,
}FT_Flow_Trigger;

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

18
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

FT_Use_TCR_RX_Trigger option instructs the device to use the TCR register which requires two

trigger levels: halt level as the 7th parameter, and resume level as the 8th parameter. The valid

value range for the trigger levels is 0 to 60 with a granularity of 4. The device will send the XOFF

special character(s) when the receive FIFO is above the halt level and the XON special character(s)

is sent when the FIFO level is below the resume level.

FT_Use_FCR_RX_Trigger option instructs the device to use the FCR register and one of the values

in the FT_Preset_RX_FIFO_Trigger_Level table should be the 7th parameter. The value specifies

the halt level and the resume level is the next lower value.

NOTE 1: If either FT_Use_TCR_RX_Trigger or FT_Use_FCR_RX_Trigger option is used then the

library will also attempts to enable the transmit and receive FIFO. The FIFO should be enabled

under the assumption that the lowest receive trigger level is 4 bytes.

2.1.2 4.3.2 Enhanced Hardware Flow control

Enhanced Hardware flow control is comprised of auto CTS and auto RTS. The RTS output pin

automatically activates when there is enough room, below the specified halt trigger level, in the

FIFO to receive data and de-activates the RTS output when the receive FIFO is sufficiently full,

above the halt trigger level.

To use Hardware flow control, specify the following parameters in the SetFlowControl function:

 Parameter 1: FT_HW_Flow
Parameter 2: One or more entries from the FT_HW_FLOW_OPTIONS table to use auto CTS

and/or RTS.
Parameter 3: One entries from the FT_Flow_Trigger table, same trigger level options as

described in the software flow control.
Parameter 4: the halt level if FT_Use_TCR_RX_Trigger option is used for the 3rd parameter

or the pre-set trigger level in the FT_Preset_RX_FIFO_Trigger_Level table if

the 3rd parameter is FT_Use_FCR_RX_Trigger.

Parameter 5: the resume level if the FT_Use_TCR_RX_Trigger option was used for 3rd
parameter.

2.1.3 4.3.3 Enhanced RS485 Flow Control

To use RS485 flow control, specify the following parameters in the SetFlowControl function:

Parameter 1: FT_RS485_Flow
Parameter 2: One entry from the FT_RS485_FLOW_OPTIONS table
Parameter 3: The value of the address byte, if FT_Auto_RS485_Address_Detection option

was specified for the 2nd parameter.

In RS-485 mode, a ’master’ station transmits an address character followed by data characters for

the addressed ‘slave’ stations. The VI800A-N485U supports two RS485 modes: normal multidrop

mode and auto address detection mode.

In normal multidrop mode, FT_RS485_Multidrop_Mode option was used for 2nd parameter, the

receiver is initially disabled and all address byte broadcasted by the ‘master’ will get pushed to the

receive FIFO. The application needs to check the address byte and enables the receiver for the

subsequent data from the ‘master’ if the address byte addresses its ID address. The application

can disable the receiver upon receiving another address byte that’s not for itself or a completion

message from the ‘master’.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

19
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

In auto address detection mode, FT_Auto_RS485_Address_Detection option is used in the 2nd

parameter, the device constantly monitors the receiving data for the address byte. Upon receiving

an address byte that matches the ID address, as specified by the 3rd parameter, the device will

automatically enables the receiver and push the address byte to the receive FIFO. The receiver

will then receive the subsequent data from the ‘master’ station until disabled by the application

after having received a completion message from the ‘master’ station or automatically disabled if

another address byte is received and it does not match the address byte specified in the 3rd

parameter.

All RS485 address bytes are assumed to have a parity type of 1 so the library Init fucntion must

use FT_Forced_Parity_Zero option for the parity type parameter. If the master is another plug-in

module then it must change the data format by using the SetDataFormat() function with

FT_Forced_Parity_One parity type to send an address byte and revert back the data format for

data characters.

4.4 Receive FIFO Status

Sometimes errors might occur in the receive FIFO such as data overrun, data frame error, data

parity error, and line break condition. Calling the GetReceiveFIFOStatus function and comparing

the entries in the FT_FIFO_Status table can determine the status of the receive FIFO. Character

errors, FT_Parity_Error, FT_Framing_Error, and FT_Break_Interrupt, are identified by reading the

FIFO because those three errors are indicating the character status on the top of the receive FIFO

(next character to be read). More than one character error can occur and the character errors

persist till the character is read from the FIFO. FT_Overrun_Error indicates whether a FIFO

overrun condition has occurred. The GetReceiveFIFOStatus function returns FT_FIFO_OK if no

errors were detected. NOTE: Polling the status from the FIFO should not enable the following

interrupts (no interrupts are enabled by default): FT_Modem_Status_Interrupt,

FT_Receive_Line_Status_Interrupt, FT_Transmit_Holding_Register_Interrupt, and

FT_Receive_Holding_Register_Interrupt.

4.5 Interrupts

Interrupts can be used in some situations instead of excessively polling the device. The

FT_Enableable_Interrupts table has all the available device interrupts. Interrupts are

disabled/enabled by the SetInterrupts function. FT_Enable_All_Interrupts and

typedef enum FT_FIFO_Status{
 FT_FIFO_OK=0,

 FT_Overrun_Error=2,
 FT_Parity_Error=4,
 FT_Framing_Error=8,
 FT_Break_Interrupt=16,
}FT_FIFO_Status;

typedef enum FT_Enableable_Interrupts{
 FT_Enable_All_Interrupts=239,
 FT_CTS_Interrupt=128,
 FT_RTS_Interrupt=64,

 FT_Xoff_Interrupt=32,
 FT_Modem_Status_Interrupt=8,

 FT_Receive_Line_Status_Interrupt=4,
 FT_Transmit_Holding_Register_Interrupt=2,
 FT_Receive_Holding_Register_Interrupt=1,
 FT_Enable_No_Interrupts=0,
}FT_Enableable_Interrupts;

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

20
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

FT_Enable_No_Interrupts entries are not interrupts but they can be used as a quick way to

enable all interrupts or none at all.

After the desired interrupt(s) and an ISR have been set, as shown in Section 8.1.2, the

application should compare the result from the GetInterrupts function against the entries in

the FT_Interrupts_Status table. Interrupts are prioritized and only the highest priority

interrupt is reported so the application should check the interrupts in the order presented in

the FT_Interrupts_Status table. The GetInterrupts function returns the FT_No_Interrupts

status if there is no interrupt.

NOTE: The SetPresetFIFOInterruptTriggerLevel function uses the predefined trigger levels in

the FCR register for FIFO interrupts which is the same register that the SetFlowControl

function sets if the application specifies FT_Use_FCR_RX_Trigger flow control trigger levels.

Both of them can’t be used at the same time.

4.6 Baud Rate

The desired baud rate is one of the parameter values for the overloaded Init() library

function. The valid range of the baud rate is 15 to 921600. NOTE: not all baud rates within

the range are "supported" because of the rounding error on some "non-standard" baud rates.

The final baud rate uses the following equation to calculate a divisor for the internal baud rate

generator logic unit: divisor = 14745600 / (baud rate*16). The 16-bit divisor can only take

integer values, so if the division did not yield an integer value the actual baud rate will be a

little different to the desired rate. The following table shows the desired baud rates, actual

device baud rate and the percentage difference.

typedef enum FT_Interrupts_Status{
 FT_No_Interrupts = 255
 FT_Receiver_Line_Status_Error = 6,

 FT_Receiver_Time_Out_Interrupt = 12,
 FT_RHR_Interrupt=4,
 FT_THR_Interrupt=2,
 FT_Modem_Interrupt=0,
 FT_Input_Pin_State_Change=48
 FT_Received_Xoff_Signal=16,
 FT_CTS_RTS_Inactive=32,

}FT_Interrupts_Status;

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

21
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Table 4-2 - Baud Rates

Desired baud rate: Internal baud rate:
Percentage error

difference between
desired and actual:

15 15 0

50 50 0

75 75 0

110 110.0023872 0.002170158

134 134.0119238 0.008897962

150 150 0

300 300 0

600 600 0

1200 1200 0

1800 1800 0

2000 2003.478261 0.173761953

2400 2400 0

3600 3600 0

4800 4800 0

7200 7200 0

9600 9600 0

19200 19200 0

38400 38400 0

56000 57600 2.816901408

57600 57600 0

115200 115200 0

230400 230400 0

460800 460800 0

921600 921600 0

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

22
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

5 Setup steps

5.1 Hardware Setup and Pin Connections

There are two ‘Comm Daughter’ connectors on the back of the VM800P board and the TTLU, 232U,

and N485U plug-in modules should only be connected on the right side connector (J6).

Figure 5-1 : VM800P Board

The VI800A-TTLU plug-in module is capable of using the enhanced software and hardware flow
control or application managed flow control. The following tables listed out which pins must be
connected for the particular flow control:

Enhanced Software Flow
Control

From: To:

TXD RXD

RXD TXD

GND GND

Table 5-1 - TTLU Enhanced Software Flow Control connections

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

23
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Table 5-2 - TTLU Hardware Flow Control connections

Figure 5-2 : VI800A-TTLU module

The VI800A-232U plug-in modules are capable of using the enhanced software and hardware flow
control or application managed flow control. The following tables list which pins must be
connected for the particular flow control:

Table 5-3 - 232U Enhanced Software Flow Control connections

Hardware Flow Control

From: To:

TXD RXD

RXD TXD

RTS# CTS#

CTS# RTS#

GND GND

Enhanced Software Flow
Control

From: To:

TXD RXD

RXD TXD

GND GND

Hardware Flow Control

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

24
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Table 5-4 - 232U Hardware Flow Control connections

Figure 5-3 : VI800A-232U module

The VI800A-N485U plug-in modules are capable of using enhanced RS-485 flow control or
application managed flow control. The following tables list which pins must be connected for the
enhanced RS-485 flow control:

Table 5-5 - N485U Flow Control connections

It’s important to make sure the jumper JP2 is connected to the ON position. Connecting the
module loop back jumpers have the same effect as connecting the module’s output pins to the
input pins of itself and the receiver unit. Termination resistor jumpers end the RS485 line.

From: To:

TXD RXD

RXD TXD

RTS CTS

CTS RTS

GND GND

Enhanced RS-485 Flow Control

From: To:

Rx+ TX+

Rx- TX-

Tx+ Rx+

Tx- Rx-

GND GND

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

25
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 5-4 : VI800A-N485U Module

5.2 Library Sketches

This section demonstrates how to access the sample Arduino sketches of the VM800P plug-in

module Arduino library and upload the sketch to the VM800P board.

A successfully installed library will contain “FTDI” as one of the items in the Examples list menu

and hovering over it will reveal the available sketch for the particular platform as shown below. If

the plug-in library was added to an existing FTDI library then the “FTDI” folder will also contain all

the other sample sketches.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

26
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 5-5 : Arduino IDE – example sketch

Clicking on any one of the example sketches will open it up with a new sketch window. It can

be examined and/or uploaded to the Arduino board by selecting the correct board type and

Serial Port first then choosing Upload. For the VM800P plug-in example sketches, the board

choice must be the “Arduino Pro or Pro Mini (5V, 16MHz) w/ Atmega328”.

After making the wiring connections for the respective module as described in Section 5.1, the

sketch can be uploaded to the board.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

27
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 5-6 : Arduino IDE -Board selection

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

28
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 5-7 : Arduino IDE – Serial port selection

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

29
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 5-8 : Arduino IDE – Upload Button

Once the sample sketch has been uploaded, the user can observe the sketch print-outs by clicking

the Serial Monitor button, as indicated by the following figure.

Figure 5-9 : Arduino IDE - Serial Monitor

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

30
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6 VI800A-232U Examples

This example uses example sketches in the FT_VI800A_232U folder. The following example

sketches demonstrate two scenarios –VI800A-232U to VI800A-232U and VI800A-232U to RS-232

cable communication.

6.1 Setup and Run

After making the pin connection as described in Section 5.1, it should look something like the

following figure. NOTE: The 232U example sketches are using the enhanced software flow control

so the RTS and CTS pins are not required to be connected but the two pins are required for

hardware flow control.

Figure 6-1 : VI800A-232U to VI800A-232U

Once the hardware setup is done and the example sketches have been uploaded to one of each
board, the Serial Monitor should be enabled as explained in Library Sketches section. The
software flow control example sketches will not start by themselves unless the user has sent a
letter ‘p’ to the sender sketch’s Serial Monitor, as indicated in the following figure.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

31
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 6-2 : VI800A-232U Serial Monitor #1

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

32
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2 VI800A-232U to VI800A-232U Software Flow Control

6.2.1 Example 1

For this example, two VM800P boards and VI800A-232U modules,

Receiver_Enhanced_SW_Flow_Ctl and Sender_Enhanced_SW_Flow_Ctl example sketches in the

FT_VI800A_232U folder are needed.

The following figure is a snapshot of the data transmission output in the Arduino serial monitors.

Notice the receiver’s FIFO fill level is always within a certain range due to the receive trigger

levels.

Figure 6-3 : VI800A-232U Serial Monitor #2

6.2.1.1 Code Explanation

In this example, if the user sent a letter ‘p’ in the sender’s serial monitor, the sender,

Sender_Enhanced_SW_Flow_Ctl.ino, will keep sending the alphabet letters till the receiver,

Receiver_Enhanced_SW_Flow_Ctl.ino, has reached its halt trigger level and resumes data

transmission after FIFO is below the resume level.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

33
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2.1.1.1 Sender

The sender has the above setup sequence which performs the following:

 Use the overloaded Init() function to initialize the device with the default values of:
baud rate – 9600, parity type – none, stop bits – 1, data bits – 8.

 In the SetFlowControl function, the sender will use enhanced software flow control,

FT_SW_Flow, with a flow combination that will only check the incoming data for
the XON1 special character followed by XON2 special character to resume data
transmission and XOFF1 followed by XOFF2 special character for stop data

transmission, NO_TX_FLOW_RX_XON1_XON2_XOFF1_XOFF2. The receiver in this
example will not send any kind of data to the sender except the special characters,
so it doesn’t make sense for the sender to have any transmit flow combination [1].
The following four integer parameter values are for XON1, XON2, XOFF1, and
XOFF2 special characters, in respective order, and they can be any 8-bit value
integer. It’s important that the same special characters are being used by the
sender and the receiver. NOTE: two special characters for resume and halt are

recommended if the transferring data is in hex format, otherwise non-printable
ASCII value are sufficient if the transferring data consist only of printable
characters. The final parameter, FT_Use_No_RX_Trigger, indicates the sender will
not use any receiving FIFO trigger level to send special characters to the receiver
because the receiver will not send any data to the sender.

 The EnableFIFO(FT_Enable) library function explicitly enables the FIFO because the

SetFlowControl function attempts to enable the FIFO if the receive trigger level is

specified, but since no receive trigger level is specified then the FIFO is not
enabled. The configuration in this example requires the sender to enable the FIFO
because only one byte is used if the FIFO is not enabled. The software flow
combination of the receiver will send two special characters for the signal to halt
and resume data transmission so the FIFO must be enabled in order to prevent
data overflow.

It’s strongly recommended to enable the FIFO whenever possible, even if the software flow

combination consists of one single signaling character. Situations such as the special character

sequence of: resume followed by the halt character but the device might not be able to detect the

halt character if the special characters are being sent in quick succession and the device was busy.

[1] Whenever enhanced software flow control is used, the device will automatically discard the

special character(s) and they wouldn’t appear in the receiving FIFO.

The above code snippet is all the sender needs to send the data to the receiver. The

GetTransmitFIFOFreeSpace() function is used to make sure no transmit FIFO overflow.

VI800A.Init(FT_232U_CS);

VI800A.SetFlowControl(FT_SW_Flow,NO_TX_FLOW_RX_XON1_XON2_XOFF1_XOFF2,48,48,49,4
9, FT_Use_No_RX_Trigger);

//enable receive FIFO
VI800A.EnableFIFO(FT_Enable);
VI800A.clearFIFO();

 if((VI800A.GetTransmitFIFOFreeSpace()) && manualStart){

 VI800A.Write(value[valueIndex]);
 valueIndex=(valueIndex+1)%26;
 }

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

34
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2.1.1.2 Receiver

The Receiver has the above initialization setup and it performs the following:

 Initialize the device with default baud rate and data format.
 In the SetFlowControl function, the receiver will use the enhanced software flow control,

FT_SW_Flow. The software flow combination, TX_XON1_XON2_XOFF1_XOFF2, specifies

the device will only send XON1 and XON2 to signal the sender to resume and XOFF1
followed by XOFF2 to halt the data transmission, the special characters are the same as

the ones used by the sender. The receiver will use FCR receive FIFO trigger levels and the
pre-set level of 16 characters.

In the above figure, notice the receive FIFO level is always around 9 to 19 but the halt trigger level

is set to 16 characters and the resume level is 8, next lower pre-set level. Due to the overhead to

send the special characters, the actual FIFO trigger levels might not be exactly as the specified

level and it could be a couple of characters passed the trigger levels.

The receiver ensures the correctness of the flow control with its own check on the incoming data

against its own expected value and the alphabet characters should match up even if running the

two sketches for a prolonged period of time.

…
VI800A.Init(FT_232U_CS);
…
VI800A.SetFlowControl(FT_SW_Flow,TX_XON1_XON2_XOFF1_XOFF2,48,48,49,49,

FT_Use_FCR_RX_Trigger, FT_RX_Sixteen_Characters);
VI800A.clearFIFO();

incomingData = VI800A.Read();
 if(g_var != incomingData)
 {
 Serial.print(g_var);
 Serial.print(' ');

 Serial.print(incomingData);
 Serial.print(' ');

 }
 delay(100);
 g_var++;
 Serial.print("FIFO fill level: ");
 Serial.println(VI800A.GetReceiveFIFOFillLevel());
 if(g_var > 'Z')

 {
 g_var = 'A';
 }

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

35
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2.2 Example 2

This example uses the Receiver_Enhanced_SW_Flow_Ctl_2 and Sender_Enhanced_SW_Flow_Ctl_2

examples in the FT_VI800A_232U folder and FIFO status functionality is being demonstrated.

6.2.2.1 Code Explanation

6.2.2.1.1 Sender

The sender, Sender_Enhanced_SW_Flow_Ctl_2.ino, has almost the same code as the sender of the

previous example and the only major differences are:

The above code section toggles the FIFO every time the user presses the letter ‘q’. If reading the

FIFO is disabled and if the user sends more than 1 character to the sender from the receiver’s

serial output then the device will raise an overflow error, reported by the GetReceiveFIOFStatus()

function.

The GetReceiveFIFOStatus library function reports any errors for the whole receive FIFO as well as

the next character to be read, as described in Section 4.4. FT_Parity_Error, FT_Framing_Error,

and FT_Break_Interrupt FIFO errors represent the top of the FIFO, the next character to be read,

and FT_Overrun_Error indicates whether an overrun event has occurred or not.

else if(command == 'q'){

 readData^=1;
 if(readData){
 Serial.println("Read data from FIFO.");
 VI800A.EnableFIFO(FT_Enable);
 VI800A.clearFIFO();

 }
 else{
 Serial.println("Stack data in FIFO");
 VI800A.EnableFIFO(FT_Disable);
 VI800A.clearFIFO();
 }
}

void GetReceiveFIOFStatus(){
 fifoStatus = VI800A.GetReceiveFIFOStatus();
 if(fifoStatus==FT_FIFO_OK){
 return;
 }
 else{

 if((fifoStatus&(uint8_t)FT_Overrun_Error)==FT_Overrun_Error)
 Serial.println("Data Overflow occurred.");
 else if((fifoStatus&(uint8_t)FT_Parity_Error)==FT_Parity_Error)
 Serial.println("Data Parity Error occurred.");
 else if((fifoStatus&(uint8_t)FT_Framing_Error)==FT_Framing_Error)
 Serial.println("Data Framing Error occurred.");

 else if((fifoStatus&(uint8_t)FT_Break_Interrupt)==FT_Break_Interrupt)
 Serial.println("Line Break detected.");
 }
}

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

36
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.2.2.1.2 Receiver

The only place where the receiver, Receiver_Enhanced_SW_Flow_Ctl_2.ino, is different from the

previous receiver is the following:

The above code snippet sends out the line break condition to the sender whenever the user

pressed the letter ‘l’. Line break condition is represented by the value of 0x00 in the FIFO as well

as the FT_Break_Interrupt FIFO status. StartTransmitLineBreak library function continuously

sends out the line break condition and the StopTransmitLineBreak function must be called to stop

the transmission of the line break condition.

6.2.3 Example 3

This example uses the Receiver_SW_Flow_Ctl.ino and Sender_SW_Flow_Ctl.ino example sketch.

Instead of using enhanced flow control, this section demonstrates the scenario where either the

sender or the receiver is unable to use enhanced software flow control. This example also

demonstrates how to set the GPIO pin state to enable the on-board LEDs.

The sender will start to send data to the receiver whenever the user presses the letter ‘p’ in the

serial monitor.

6.2.3.1 Sender

The sender has the above setup section. It’s almost the same as all the other examples except

the SetIOPinDirection and SetIOPinState functions are used to set the direction of the GPIO pins

and the state of the output pins. Unless the output pins are connected to the respective input pin,

the input GPIO pins will not light up. Also, the device has a fixed direction for the GPIO pins so the

pin direction value should always be 0xF0.

 if(command == 'l'){ //send line break condition
 VI800A.StartTransmitLineBreak();
 delay(5);
 VI800A.StopTransmitLineBreak();
 }

 //set data format, same as calling VI800A.Ini(FT_232U_CS);
 VI800A.Init(FT_232U_CS,9600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);

 //use hardware flow control but no FIFO trigger
 VI800A.SetFlowControl(FT_No_Flow);
 VI800A.EnableFIFO(FT_Enable);

 VI800A.SetIOPinDirection(0xF0);
 VI800A.SetIOPinState(0xFF);

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

37
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Whenever enhanced software flow control is used, the device automatically detects, performs the

appropriate functions and discards the special character(s). In a pure application controlled

software flow, a similar function in the above code snippet is required to manually detect the

special character(s) to halt and resume data transmission. In this example sketch, XON special

character has the value of 0x01 and XOFF special character has the value of 0x02. The

SetIOPinState function lights up the next LED in the sequence when the sender received a XON

special character.

6.2.3.2 Receiver

The receiver has the above setup section.

The receiver has its own halt and resume FIFO trigger level and the state of the data transmission.

The halt and resume levels are the same as the previous examples.

 if(VI800A.isDataInReceiver()){
 incomingData = VI800A.Read();
 if(incomingData==XON){ //signal for data transmission

 transmitData=1;
 VI800A.SetIOPinState(IOPinStates[IOPinStatesIndex]); //enable the next
LED in the sequence
 IOPinStatesIndex=(IOPinStatesIndex+1)&0x03;
 }
 else if(incomingData==XOFF) //signal to halt data transmission

 transmitData=0;
 else{
 Serial.print("Received: ");
 Serial.println(incomingData);
 }
 }

 /* Initialize serial print related functionality */
 Serial.begin(9600);
 Serial.println("\n\r\n\r-----------Sample Application for 232U--------------");

 VI800A.Init(FT_232U_CS,9600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);

 VI800A.SetFlowControl(FT_No_Flow);
 VI800A.EnableFIFO(FT_Enable);

char XON=0x01,XOFF=0x02;

uint8_t haltlvl=16, resumelvl=8, curFIFOlvl, XONSent=0, XOFFSent=0;

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

38
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

In the above code snippet, the receiver is required to constantly monitor the receive FIFO fill level.

The appropriate special character was sent whenever a trigger level has been reached.

Figure 6-4 : Software Flow Control output

One major difference between application controlled software flow and enhanced software control

is the amount of overhead. As seen in the serial outputs of the previous examples, the minimum

and maximum numbers of the receiver’s fill level are only 2 or 3 characters beyond the trigger

levels. In the above figure, the FIFO fill level reached 19 characters before the sender halted data

transmission and that’s only when the sender has a 20 milliseconds time delay because the

example wouldn’t work if there is no delay or the delay is too short.

 curFIFOlvl = VI800A.GetReceiveFIFOFillLevel();
 if(curFIFOlvl>haltlvl){
 if(XOFFSent==0){

 VI800A.Write(XOFF);
 XOFFSent=1;
 XONSent=0;
 }
 }
 else if(curFIFOlvl<resumelvl){

 if(XONSent==0){
 VI800A.Write(XON);
 XONSent=1;
 XOFFSent=0;
 }
 }

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

39
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.3 VI800A-232U to VI800A-232U Hardware Flow

Control

This example uses the same hardware setup as the VI800A-232U to VI800A-232U Software Flow

control.

6.3.1 Example 1

This example uses the Sender_Enhanced_HW_Flow_Ctl.ino and

Receiver_Enhanced_HW_Flow_Ctl.ino example sketches in the FT_VI800A_232U folder. The data

transmission starts whenever the user sends a letter ‘p’ to the sender’s serial monitor. The

following figure is a snapshot of the serial terminal outputs.

Figure 6-5 : VI800A-232U Serial Monitor #3

6.3.1.1 Code Explanation

6.3.1.1.1 Sender

The sender has the above setup to initialize the device with default values. Similar to software

flow control parameters, if FT_Use_No_RX_Trigger option was specified then the library will not

enable the FIFO so the FIFO must be enabled explicitly. The sender will not receive large amounts

of data in this example so no FIFO trigger levels are specified.

VI800A.Init(FT_232U_CS,9600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);

VI800A.SetFlowControl(FT_HW_Flow, FT_Use_No_RX_Trigger);
VI800A.EnableFIFO(FT_Enable);

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

40
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.3.1.1.2 Receiver

The receiver has the above setup. Hardware flow control doesn’t use special characters but it uses

the same parameters for FIFO trigger levels. In this example the receiver uses the FCR FIFO

trigger levels, FT_Use_FCR_RX_Trigger, and the pre-set halt level of 16 characters,

FT_RX_Sixteen_Characters. The resume level is 8 characters.

In this example, both of the sender and receiver are using similar code sections as the enhanced

software flow control examples to send and receive data. However, there are a couple of

differences between enhanced software and enhanced hardware flow control. Hardware flow

control has much lower overhead than software flow control, as shown in the above figure. The

receiver’s FIFO fill level stops and starts at the exact level as the specified trigger levels, even

though same trigger levels are used in both software and hardware flow control examples.

However, the trade-off for hardware flow control is that it requires a 4 wires interface as oppose to

only 2 wires for software flow control.

6.3.2 Example 2

This example uses the same hardware setup as the previous example and the required example

sketches are: Sender_Enhanced_HW_Flow_Ctl_2.ino and Receiver_Enhanced_HW_Flow_Ctl_2.ino.

This example shows similar functionalities as the previous example and a couple of library

functions to make sure the data in the FIFO have actually been sent to the receiver. The following

is a snapshot of the serial monitors.

VI800A.Init(FT_232U_CS,9600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);
VI800A.SetFlowControl(FT_HW_Flow, FT_Use_FCR_RX_Trigger, FT_RX_Sixteen_Characters);

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

41
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 6-6 : Hardware Flow Control Example 2 Serial Monitors Output

6.3.2.1 Sender

The sender has the above initialization codes. Instead of the default baud rate and data format,

this example uses the maximum supported baud rate of 921600.

The sender in this example didn’t enable the FIFO and it checks each character has actually been

sent before sending the next character. The overloaded Write function returns how many bytes of

data are sent to the transmit FIFO and the isTransmitFIFOandShiftRegisterEmpty library function

 //initialize function, same as calling
 VI800A.Init(FT_232U_CS,921600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);
 VI800A.SetFlowControl(FT_HW_Flow, FT_Use_No_RX_Trigger);

 if(manualStart && (VI800A.GetTransmitFIFOFreeSpace())){

 if(VI800A.Write(value[valueIndex])==0)
 Serial.println("Data not in FIFO");
 delay(5);
 while(!VI800A.isTransmitFIFOandShiftRegisterEmpty()){
 Serial.print("Waiting to send: ");
 Serial.println((char)value[valueIndex]);

 }
 Serial.print("Sent: ");

 Serial.println(value[valueIndex]);
 valueIndex=(valueIndex+1)%26;
 }

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

42
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

guarantees all the data in the FIFO has been pushed out to the receiver by checking the emptiness

of the transmit FIFO as well as the transmit shift register.

6.3.2.2 Receiver

Instead of the FCR receive trigger levels used by the previous examples, the receiver in this

example uses the TCR register. The TCR register takes two parameters for the halt and resume

level, in this case the halt level is 40 characters and the resume level is 4 characters.

6.4 VI800A-232U to PC

For this scenario, one VI800A-232U module and one RS232-USB cable are needed. The
connection should be as follows (again CTS and RTS lines are not needed for software flow

control):

Connect

(232U)

Connect TO
(RS232-USB

cable)

GND GND

TXD RXD

RXD TXD

RTS# CTS

CTS# RTS

Table 6-1 - VI800A-232U & RS232-USB connections

Figure 6-7 : 232U & RS232-USB connected

VI800A.Init(FT_232U_CS,921600,FT_No_Parity, FT_One_Stop_Bit, FT_Eight_Data_Bits);
VI800A.SetFlowControl(FT_HW_Flow, FT_Use_TCR_RX_Trigger, 40, 4);

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

43
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

6.4.1 Software Flow with Tera Term

After connecting the VI800A-232U with the RS232 cable as defined in the above table. The

Receiver_Enhanced_SW_Flow_Ctl.ino should be uploaded to the VM800P board. Open two

instances of Tera Term and connect one to the VM800P board and the other one to the RS232

cable’s serial port. The Tera Term terminal for the RS232 cable needs to have the same data

configuration as used in the example sketch and the Flow control option should be “Xon/Xoff”. The

Tera Term Serial port configuration can be accessed by clicking the Setup menu and then the

“Serial port…” option.

Figure 6-8 : Tera Term Serial Port setup

The following figure is the result of continuously sending characters from the RS232 terminal till

the trigger level of 16 characters has been reached.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

44
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 6-9 : Software Flow with PC

The Receiver_Enhanced_SW_Flow_Ctl.ino uses ASCII value of number 1 for XOFF and number 0

for XON characters so they’re being shown in the RS232 cable terminal when the FIFO level

reached the trigger levels. The special characters are discarded by the plug-in modules so

connecting the module to a PC can be used to test whether the special characters are actually

sent.

6.4.2 Hardware Flow with Tera Term

For this example, the Sender_Enhanced_HW_Flow_Ctl.ino is being used. The example sketch

should be uploaded to the VM800P board and the Tera Term terminal for the RS232 cable should

use the hardware flow control option.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

45
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 6-10 : Tera Term Serial Port Hardware Flow Option

In the RS232 cable terminal, click File->Send file… and then choose a text file to be sent to the

RS232_HW_Receiver.

Figure 6-11 : Tera Term Send File

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

46
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

The following figure is an instance of the RS232_HW_Receiver terminal during the transmission of

a text file. Notice the FIFO trigger levels of halting at 17 characters and resume at 8 characters

are still in effect.

Figure 6-12 : Tera Term Hardware Flow Data Transferring

7 VI800A-TTLU Examples

All the examples for VI800A-TTLU plug-in modules are almost the same as those in the

FT_VI800A_232U folder for the VI800A_232U. The only differences are the initialization macro

and the appropriate header file.

7.1 Setup and Run

The VI800A-TTLU plug-in boards should be connected as described in the TTLU Hardware
Flow Control table.

The following figure shows the connected VI800A-TTLU plug-in boards.

NOTE: software flow control doesn’t require the connection on the CTS# and RTS# pins.
The pins are connected so the setup can be used in all example sketches in this section.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

47
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 7-1 : TTLU to TTLU Connections

7.2 VI800A-TTLU to VI800A-TTLU Software Flow Control

Refer to Section 6.2 but the respective example sketches should be from the FT_VI800A_TTLU

example folder.

7.3 VI800A-TTLU to VI800A-TTLU Hardware Flow Control

Refer to Section 6.3 but the respective example sketches should be from the

FT_VI800A_TTLU example folder.

7.4 VI800A-TTLU to PC

Refer to Section 6.4 but the respective example sketches should be from the

FT_VI800A_TTLU example folder.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

48
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

49
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

8 VI800A-N485U Examples

In this example, two VI800A-N485U modules are used. After making the pin connection as

described in Hardware Setup and Pin Connections, it should look like the following Figure.

Figure 8-1 : N485U to N485U connection

8.1 Code Explanation

There are two example sketches in the “VI800A-N485U” FTDI Example subfolder:

Receiver_Enhanced_Flow_Ctl and Sender_Enhanced_Flow_Ctl. The receiver example sketch

contains both Auto Address Detection and Multidrop enhanced flow functionalities, accessible by a

macro switch. The Receiver is also demonstrating the device interrupt functionality so the

application doesn’t have to constantly poll the receive FIFO for any incoming data. The auto

address detection mode is enabled by default.

8.1.1 Sender

The above code snippet is the sender’s setup section.

VI800A.Init(SS, 9600,FT_Forced_Parity_Zero, FT_One_Stop_Bit, FT_Eight_Data_Bits);

VI800A.SetFlowControl(FT_No_Flow);
VI800A.EnableFIFO(FT_Enable);
VI800A.clearFIFO();

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

50
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

NOTE: The parity type for both of the sender and receiver must be “Forced Zero” in order for the

receiver device to properly detect the actual address byte.

The letter ‘q’ and ‘w’ are configured as an address byte by explicitly changing the parity type to

“FT_Forced_Parity_One” before sending the address byte then reverting back the data format for

any subsequent data. The receiver sketch will only push data to the FIFO after receiving the ‘q’

address. The receiver will disable its receiving functionality for any other address byte that does

not address its address ID, so pressing the ‘q’ key will enable subsequent data to get through and

pressing the ‘w’ key will immediately disable the receiver, if it’s not disabled. A time delay is

required after setting the address data format and before reverting back to the data format

because data written to the FIFO has to go through the shift register. The effect of the

commented Serial print lines will be discussed in the receiver section.

8.1.2 Receiver

8.1.1.1 Auto Address Detection

As referenced in Section 4.3.3, the auto address detection mode automatically detects the

incoming addresses, enables the device receiver, and disables the receiver after received an

address byte that’s not addressing itself. The default mode of the receiver is auto address

detection and it uses the device interrupt for data retrieval.

command = Serial.read();
if(command == 'q'){
 VI800A.SetDataFormat(FT_Forced_Parity_One, FT_One_Stop_Bit,

FT_Eight_Data_Bits);
 delay(3);
 VI800A.Write(command);
 Serial.print("Sent Address Byte: ");
 Serial.println((char)command);
 delay(3);
 VI800A.SetDataFormat(FT_Forced_Parity_Zero, FT_One_Stop_Bit,

FT_Eight_Data_Bits);
 }
else if(command == 'w'){

 VI800A.SetDataFormat(FT_Forced_Parity_One, FT_One_Stop_Bit,
FT_Eight_Data_Bits);
 delay(3);
 VI800A.Write(command);

 Serial.print("Sent Address Byte: ");
 Serial.println((char)command);
 delay(3);
 VI800A.SetDataFormat(FT_Forced_Parity_Zero, FT_One_Stop_Bit,
FT_Eight_Data_Bits);
}

else{
 VI800A.Write(command);

 //Uncomment the following two lines to print out the sent character. However, the
overhead to print the following two message will most likely be longer than 4 character time
frame to hit the stale data interrupt
 //Serial.print("Sent: ");

 //Serial.println((char)command);

}

 pinMode(FT_N485U_INT,INPUT);
 digitalWrite(FT_N485U_INT,HIGH);

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

51
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

To use external device interrupts, the FT_N485U_INT pin must be configured as an input pin.

The above code snippet is the receiver’s initialization code with the parity type is set to

“FT_Forced_Parity_Zero”. The AUTO_ADDRESS_DETECTION macro is defined by default so auto

address detection is used and the AddressByte variable contains the value of the letter ‘q’. The

SetInterrupts function enables the address byte special character and receive FIFO trigger level

interrupts. The SetFlowControl function for the enhanced RS485 flow control doesn’t enable the

FIFO so the FIFO needs to be enabled explicitly and the SetFIFOInterruptTriggerLevel function sets

the FIFO interrupt trigger level to 8 characters for both receive and transmit FIFO. Finally, the

Arduino standard library attachInterrupt function is used to initializes the interruptHasHappened

ISR with FALLING trigger mode.

The interruptHasHappened ISR function sets a volatile global variable which instructs the

application to perform the appropriate operation according to the prioritized interrupt from the

device.

VI800A.Init(FT_N485U_CS, 9600,FT_Forced_Parity_Zero, FT_One_Stop_Bit,

FT_Eight_Data_Bits);

#ifdef AUTO_ADDRESS_DETECTION
 VI800A.SetFlowControl(FT_RS485_Flow,FT_Auto_RS485_Address_Detection
_Mode,AddressByte);
#else
 VI800A.SetFlowControl(FT_RS485_Flow,FT_RS485_Multidrop_Mode,Address

Byte);
#endif

VI800A.SetInterrupts(FT_Xoff_Interrupt|FT_Receive_Holding_Register_Interrupt);

VI800A.EnableFIFO(FT_Enable);

VI800A.clearFIFO();

VI800A.SetFIFOInterruptTriggerLevel(8,8);
attachInterrupt(0,interruptHasHappened,FALLING);

void interruptHasHappened(void){
 InterruptOccured = 1;

}

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

52
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

The CheckInterruptStatus function will be called if an interrupt has occurred. The device interrupts

are prioritized and the type of interrupt should be checked in the order listed in the plug-in

library’s FT_Interrupts_Status table.

 if(status == FT_No_Interrupts)
 return;

 if(status == FT_Receiver_Time_Out_Interrupt){
 Serial.println("Stale Interrupt.");
 while(VI800A.GetReceiveFIFOFillLevel()){
 Serial.println((char)VI800A.Read());
 }
 }

 else if(status == FT_RHR_Interrupt){
 Serial.println("Receive FIFO trigger level Interrupt: ");
 while(VI800A.GetReceiveFIFOFillLevel()){
 Serial.println((char)VI800A.Read());
 }
 }

 else if(status == FT_Received_Xoff_Signal){
 Serial.println("XOFF Special Character Detected Interrupt.");
 Serial.print("RS485 Address Character: ");
 Serial.println((char)VI800A.Read());
#ifndef AUTO_ADDRESS_DETECTION
 if(VI800A.Read() == AddressByte)

 VI800A.SetReceiver(FT_Enable);
 else
 VI800A.SetReceiver(FT_Disable);
#endif
 }

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

53
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 8-2 : RS485 auto address detection with sender prints

The above figure shows the serial monitors output if the commented Serial print lines are enabled.

Notice the receiver didn’t print the first two characters from the sender due the correct address

byte having not been sent yet so the receiver hasn’t enabled the device’s receiver. After the letter

‘q’ has been sent and received by the receiver, the device will generate a special character

interrupt and the application prints out the character. The above scenario also shows the situation

when a series of 1’s are being sent at the same time. The application sets the trigger levels to 8

characters but the receive FIFO interrupt was not be triggered even after the FIFO has queued up

8 characters. There is only a stale data interrupt because the stale data interrupt has a higher

priority than the FIFO interrupts and the serial print lines in the sender are enabled which created

a time delay of more than 4 character time frame for the stale data interrupt.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

54
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 8-3 : RS485 auto address detection without sender prints

The above figure shows the serial monitors output if the commented Serial print lines are not

enabled. Without the serial prints, the sender can send every byte to the receiver within the 4

character time frame so no stale data interrupt was triggered. After detected a receive FIFO

interrupt the example prints out all the data in the FIFO.

The example sketch is not an elegant way to retrieve the data from the FIFO but it’s merely to

demonstrate the device interrupt usage. Applications are not recommended to retrieve data in the

way presented by this example because the complexity of how the sender sends out bulk data

determines whether stale data or FIFO level interrupts will be trigged.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

55
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

8.1.1.2 Multidrop mode

If the AUTO_ADDRESS_DETECTION macro in the RS485_Receiver.ino is commented out then

the device will use multidrop mode. The differences between multidrop mode and auto

address detection are: The application uses the multidrop mode needs to manually compare

the received address character and enable or disable its receiving functionality accordingly.

Auto address detection mode passed most of the operations to the devices but the trade-off is

that only one address can be used while in Multidrop mode, applications can accept more than

1 address. The example application in multidrop mode enables/disables the receive

functionality in the CheckInterruptStatus function, after the address byte was detected by the

device.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Application Note

AN_330 VI800A TTLU 232U N485U Arduino Library Sample App
Version 1.0

Document Reference No.: FT_001067 Clearance No.: FTDI #417

56
Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

9 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH

United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com

E-mail (Support) support1@ftdichip.com

E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com

E-mail (Support) tw.support1@ftdichip.com

E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited
(USA)
7130 SW Fir Loop

Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com

E-Mail (Support) us.support@ftdichip.com

E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com

E-mail (Support) cn.support@ftdichip.com

E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales

representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications

assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the

user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from

such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/
http://ftdichip.com/

Document Reference No.: FT_001067
VI800A_TTLU/232U/N485U Sample Application On Arduino Library

 AN_330 Version 1.0

Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Appendix A– References

Document References

1. FTDI VM800P board
2. VI800-TTLU / VI800-232U / VI800-N485U

Acronyms and Abbreviations

Terms Description

Arduino Pro The open source platform variety based on ATMEL’s ATMEGA chipset

EVE Embedded Video Engine

SPI Serial Peripheral Interface

UI User Interface

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
http://www.ftdichip.com/Products/Modules/VM800P.html
http://www.ftdichip.com/Products/Modules/EVEModules.html

Document Reference No.: FT_001067
VI800A_TTLU/232U/N485U Sample Application On Arduino Library

 AN_330 Version 1.0

Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Tables

Table 3-1 - APIs description ... 13

Table 4-1 - Modules and Flow Controls .. 16

Table 4-2 - Baud Rates ... 21

Table 5-1 - TTLU Enhanced Software Flow Control connections 22

Table 5-2 - TTLU Hardware Flow Control connections .. 23

Table 5-3 - 232U Enhanced Software Flow Control connections 23

Table 5-4 - 232U Hardware Flow Control connections .. 24

Table 5-5 - N485U Flow Control connections .. 24

Table 6-1 - VI800A-232U & RS232-USB connections .. 42

List of Figures

Figure 1-1 : Block Diagram of Setup ... 5

Figure 1-2 : Architecture diagram ... 5

Figure 2-1 : Arduino IDE – add library option .. 7

Figure 2-2 : Arduino IDE - library selection browser .. 8

Figure 2-3 : Library Installation - Manual Installation .. 8

Figure 3-1 : FTDI Library folder contents ... 9

Figure 3-2 : FTDI Library - examples folder .. 9

Figure 3-3 : FTDI Library - hardware folder ... 10

Figure 3-4 : FTDI Library - libraries folder.. 10

Figure 3-5 : FTDI Library - platform headers .. 10

Figure 4-1 : Library Initialization ... 14

Figure 5-1 : VM800P Board .. 22

Figure 5-2 : VI800A-TTLU module .. 23

Figure 5-3 : VI800A-232U module .. 24

Figure 5-4 : VI800A-N485U Module .. 25

Figure 5-5 : Arduino IDE – example sketch .. 26

Figure 5-6 : Arduino IDE -Board selection ... 27

Figure 5-7 : Arduino IDE – Serial port selection ... 28

Figure 5-8 : Arduino IDE – Upload Button .. 29

Figure 5-9 : Arduino IDE - Serial Monitor ... 29

Figure 6-1 : VI800A-232U to VI800A-232U .. 30

Figure 6-2 : VI800A-232U Serial Monitor #1 .. 31

Figure 6-3 : VI800A-232U Serial Monitor #2 .. 32

Figure 6-4 : Software Flow Control output ... 38

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Document Reference No.: FT_001067
VI800A_TTLU/232U/N485U Sample Application On Arduino Library

 AN_330 Version 1.0

Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

Figure 6-5 : VI800A-232U Serial Monitor #3 .. 39

Figure 6-6 : Hardware Flow Control Example 2 Serial Monitors Output 41

Figure 6-7 : 232U & RS232-USB connected .. 43

Figure 6-8 : Tera Term Serial Port setup .. 44

Figure 6-9 : Software Flow with PC .. 44

Figure 6-10 : Tera Term Serial Port Hardware Flow Option 45

Figure 6-11 : Tera Term Send File .. 46

Figure 6-12 : Tera Term Hardware Flow Data Transferring 46

Figure 7-1 : TTLU to TTLU Connections ... 47

Figure 8-1 : N485U to N485U connection ... 49

Figure 8-2 : RS485 auto address detection with sender prints 53

Figure 8-3 : RS485 auto address detection without sender prints 54

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0

Document Reference No.: FT_001067
VI800A_TTLU/232U/N485U Sample Application On Arduino Library

 AN_330 Version 1.0

Product Page
Document Feedback Copyright © 2014 Future Technology Devices International Limited

 Appendix C– Revision History

Document Title: AN_330 VI800A_TTLU/232U/N485U Sample Application On Arduino

Library

Document Reference No.: FT_001067

Clearance No.: FTDI#417

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial release 2014-10-23

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_330%20Version%201.0
http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_000%20Version%201.0

